Messed Up Ocean Conditions Lead To Higher Murre Predation On Young Salmon

Editor’s note: Each week NOAA Fisheries emails out “FishNews,” a roundup of agency activities and research around the country. This week’s included a story from the Southwest Fisheries Science Center on what is believed to be a first.

It’s about how a bottoms-up change created a top-down impact, previously hypothesized but not seen.

A PAIR OF MURRES RETURN TO THEIR NEXT WITH FISH — PROBABLY ANCHOVIES, ACCORDING TO NOAA — TO FEED THEIR YOUNG. (POINT BLUE CONSERVATION SCIENCE, VIA NOAA)

In this case, it’s specifically about murres and young Chinook outside San Francisco Bay. When coastal upwellings failed and the birds had to change their diet from rockfish to anchovies, salmon smolts swimming near their nesting colonies found themselves on the menu too, driving down survival.

As we have all those species off Oregon and Washington, I thought it might be of interest to readers here with the following caveat from Brian Wells, lead author of the paper the story references:

“I think that a lot of this type of variability in forage and the impact on salmon is possible in [the Pacific Northwest] following poor ocean conditions. Largely, the difference in the north may be that seabirds have a bit more of a diverse diet such that the relationships may be … less obvious (i.e., may not be able to pick a single predator like we did and see the significant effect on salmon following variability in the environment).”

Oregon State University professor Robert Suryan echoes the point about a broader diet in murres along our coast, including sandlance and herring, as well as the probability they would prey on salmon when those baitfish populations are depressed. “We see little salmon in diet of murres at colonies, but they do spend a lot of time feeding around the Columbia River plume during non-breeding, so predation on salmon is likely.  In fact the Columbia River plume in So WA can be a hotspot for foraging when other places are not producing.”

For more on how marine conditions are continuing to impact birds as well as salmon, see this recent article from The Astorian.

THE FOLLOWING IS A STORY BY THE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION’S SOUTHWEST FISHERIES SCIENCE CENTER

Interpreting relationships between species and their environments is crucial to inform ecosystem-based management (EBM), a priority for NOAA Fisheries. EBM recognizes the diverse interactions within an ecosystem — including human impacts — so NOAA Fisheries can consider resource tradeoffs that help protect and sustain productive ecosystems and the services they provide.

For example, in the California Current, understanding the interactions between predator seabirds, forage fish in the coastal ocean and out-migrating salmon from San Francisco Bay could improve the understanding of salmon early survival in the ocean and a measure of the possible strength of the year class return.

In the Gulf of the Farallones, new research by scientists from NOAA Fisheries’ Southwest Fisheries Science Center, Point Blue Conservation Science, H.T. Harvey and Associates, University of California Santa Cruz, U.S. Geological Survey and the U.S. Fish and Wildlife Service found that the common murre, a small ocean seabird, can make a difference in the number of salmon that survive to return as adults. This is especially true when ocean conditions cause the murres to feed primarily on salmon and anchovy. The research has been published online in the Journal of Marine Systems, and will be included in the journal’s October print issue.

Large colonies of more than 500,000 common murres nest throughout the Gulf of the Farallones, offshore of San Francisco. In typical years, with nutrient-rich water welling up from the depths, the murres prey primarily on young rockfish around their offshore breeding sites.

When ocean conditions change, and the upwelling falters, young rockfish that are the typical prey for the murres become scarce. Then the murres switch, feeding instead on adult northern anchovies found closer to shore. That’s a problem for the young salmon entering the ocean at these near-shore locations, because the murres eat them too.

The finding documents one of the first examples of what biologists call “bottom-up” influences — changes at the base of the food web — causing “top-down” effects on West Coast salmon, such as an increase in predation by a species higher in the chain, in this case the common murres.

“This is the first example we’ve found involving salmon where bottom-up drivers are causing top-down impacts,” said NOAA Fisheries research biologist Brian Wells, lead author of the research. “The lack of upwelling affects salmon in a top-down way.”

The new research shows that salmon survival drops sharply in the years when ocean conditions lead the murres to prey on anchovy and salmon. Even in years when the murres are preying on anchovy, salmon comprise less than 10 percent of the diet of the murres; but the impact can be a significant factor in the survival of salmon. The research concludes that predation by the seabirds can make a difference in the number of salmon that survive to return as adults.

The salmon affected are primarily fall-run Chinook, which are the primary species supporting salmon fisheries off the California Coast. The research helps reveal the complex relationships between species and their environment, which in turn helps NOAA Fisheries anticipate and respond to changes that affect fish, birds and people.

For example, the murres preyed heavily on anchovy and salmon in 2005, which likely contributed to the collapse of the California salmon fishery in 2007 and 2008, the researchers found. Congress appropriated $170 million in disaster relief for fishermen affected by the collapse.

NOAA Fisheries managers can use the details to make better decisions about how best to protect and manage marine species.

“Understanding the dynamics behind these connections can help us anticipate impacts to salmon, which are very important both economically and environmentally,” said John Field, a research fisheries biologist at the SWFSC in Santa Cruz. “That can help fisheries managers make smart and informed decisions about how to manage these species into the future.”

Facebook Comments

Leave a Reply

Your email address will not be published. Required fields are marked *